TRPC1-mediated inhibition of 1-methyl-4-phenylpyridinium ion neurotoxicity in human SH-SY5Y neuroblastoma cells.

نویسندگان

  • Sunitha Bollimuntha
  • Brij B Singh
  • Shaik Shavali
  • Sushil K Sharma
  • Manuchair Ebadi
چکیده

Mammalian homologues of the Drosophila canonical transient receptor potential (TRP) proteins have been implicated to function as plasma membrane Ca(2+) channels. This study examined the role of TRPC1 in human neuroblastoma (SH-SY5Y) cells. SH-SY5Y cells treated with an exogenous neurotoxin, 1-methyl-4-phenylpyridinium ion (MPP(+)) significantly decreased TRPC1 protein levels. Confocal microscopy on SH-SY5Y cells treatment with MPP(+) showed decreased plasma membrane staining of TRPC1. Importantly, overexpression of TRPC1 reduced neurotoxicity induced by MPP(+). MPP(+)-induced alpha-synuclein expression was also suppressed by TRPC1 overexpression. Protection of SH-SY5Y cells against MPP(+) was significantly decreased upon the overexpression of antisense TRPC1 cDNA construct or the addition of a nonspecific transient receptor potential channel blocker lanthanum. Activation of TRPC1 by thapsigargin or carbachol decreased MPP(+) neurotoxicity, which was partially dependent on external Ca(2+). Staining of SH-SY5Y cells with an apoptotic marker (YO-PRO-1) showed that TRPC1 protects SH-SY5Y neuronal cells against apoptosis. Further, TRPC1 overexpression inhibited cytochrome c release and decreased Bax and Apaf-1 protein levels. Interpretation of the above data suggests that reduction in the cell surface expression of TRPC1 following MPP(+) treatment may be involved in dopaminergic neurodegeneration. Furthermore, TRPC1 may inhibit degenerative apoptotic signaling to provide neuroprotection against Parkinson's disease-inducing agents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research.

Human neuroblastoma SH-SY5Y is a dopaminergic neuronal cell line which has been used as an in vitro model for neurotoxicity experiments. Although the neuroblastoma is usually differentiated by all-trans-retinoic acid (RA), both RA-differentiated and undifferentiated SH-SY5Y cells have been used in neuroscience research. However, the changes in neuronal properties triggered by RA as well as the ...

متن کامل

The roles of thioredoxin in protection against oxidative stress-induced apoptosis in SH-SY5Y cells.

Using models of serum deprivation and 1-methyl-4-phenylpyridinium (MPP(+)), we investigated the mechanism by which thioredoxin (Trx) exerts its antiapoptotic protection in human neuroblastoma cells (SH-SY5Y) and preconditioning-induced neuroprotection. We showed that SH-SY5Y cells are highly sensitive to oxidative stress and responsive to both extracellularly administered and preconditioning-in...

متن کامل

Differential Effects of Methyl-4-Phenylpyridinium Ion, Rotenone, and Paraquat on Differentiated SH-SY5Y Cells

Paraquat (PQ), a cationic nonselective bipyridyl herbicide, has been used as neurotoxicant to modulate Parkinson's disease in laboratory settings. Other compounds like rotenone (ROT), a pesticide, and 1-methyl-4-phenylpyridinium ion (MPP(+)) have been widely used as neurotoxicants. We compared the toxicity of these three neurotoxicants using differentiated dopaminergic SH-SY5Y human cells, aimi...

متن کامل

Role of the redox protein thioredoxin in cytoprotective mechanism evoked by (-)-deprenyl.

Through the inhibition of monoamine oxidase type B (MAO-B), (-)-deprenyl (selegiline) prevents the conversion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to the toxic metabolite 1-methyl-4-phenylpyridinium ion (MPP+) and also prevents the neurotoxicity in the dopaminergic neurons in animal models. Cumulative observations suggest that selegiline may also protect against MPP+-induced n...

متن کامل

Chikusetsu Saponin V Attenuates MPP+-Induced Neurotoxicity in SH-SY5Y Cells via Regulation of Sirt1/Mn-SOD and GRP78/Caspase-12 Pathways

Studies have shown that saponins from Panax japonicus (SPJ) possess neuroprotective effects. However, whether Chikusetsu saponin V (CsV), the most abundant member of SPJ, can exert neuroprotective effects against 1-methyl-4-phenylpyridinium ion (MPP+)-induced cytotoxicity is not known. In this study, we aimed to investigate the neuroprotective effects of CsV on MPP+-induced cytotoxicity in huma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 280 3  شماره 

صفحات  -

تاریخ انتشار 2005